NATS 3035 MOLECULAR PHARMACOKINETICS

Legacy Code 300912

Coordinator Gang Zheng (https://directory.westernsydney.edu.au/search/name/Gang Zheng/)

Student Contribution Band

Check your fees via the Fees (https://www.westernsydney.edu.au/currentstudents/current_students/fees/) page.

Learning Outcomes

On successful completion of this subject, students should be able to:

- Describe mathematically the kinetic and mechanistic aspects of availability and removal of drugs in the body, including under conditions of continuous and periodic dosage.
- Explain and compare the main forms of metabolic, oxidative and hydrolytic degradation experienced in vivo by the members of each of the major types of drug class.
- Relate the chemical structure of members of a given major type of drug class to their relative stability to chemical oxidative, hydrolytic and enzymatic degradation in vitro, and to their ease of phase partitioning.
- Describe the transport and the environment experienced in vivo of members of the major types of drug class relevant to their site of action.
- Demonstrate appropriate advanced laboratory skills, for collection of kinetics and physicochemical data of the bioavailability, degradation and removal of drug molecules.

Subject Content

- 1. Kinetics of the bioavailability, degradation and removal of drug molecules.
- 2. Principles of pharmacokinetics of the transport of drugs across membranes of cells and tissues within the body.
- 3. Theory of physicochemical factors affecting the bioavailability of drugs in the body: pH, pKa, permeability, plasma protein binding, dissolution, molecular size and shape, hydrogen bonding, Log P, viscosity, conductivity, mobility, and hydrophibicity.
- 4. Principles of pharmacokinetics and mechanism of metabolism (oxidation, hydrolysis and conjugation), enzymatic degradation and stability within the body of members of the major types of drug: linear and nonlinear elimination, enzymatic, Michaelis-Menten and atypical kinetics.
- 5. Theory of in vitro adsorption of drugs onto proteins: free drug, receptors, agonists and messengers, Langmuir plots.
- 6. Time course concentration of the drugs in the body: from dose to time-course concentration of the drug in the plasma, area under the curve, renal clearance, elimination rates.

Assessment

The following table summarises the standard assessment tasks for this subject. Please note this is a guide only. Assessment tasks are regularly updated, where there is a difference your Learning Guide takes precedence.

Туре	Length	Percent	Threshold	Individual/ Mandatory Group Task
Practical	1200 words for each report	40	N	Individual
Quiz x5 (Online)	15 min each	15	N	Individual
End of Session Quiz (Online)	45 min	10	N	Individual
Final Exam (Online)	n 2 hours	35	N	Individual

Prescribed Texts

 Hedaya, MA 2012, Basic Pharmacokinetics, 2nd ed., CRC Press, London. ISBN 9781439850732