1

MATH 1017 MATHEMATICS FOR ENGINEERS 1 (WSTC ASSOCD)

Credit Points 10

Legacy Code 700101

Coordinator Upeka Kuruppu (https://directory.westernsydney.edu.au/ search/name/Upeka Kuruppu/)

Description The content of this subject covers a number of topics in mathematics essential to the study of engineering. The subject matter includes: matrix algebra, complex numbers, vectors, functions and inverse functions, differential and integral calculus of a single variable and some elementary statistics and probability theory.

School Eng, Design & Built Env

Discipline Mathematics

Student Contribution Band HECS Band 1 10cp

Check your fees via the Fees (https://www.westernsydney.edu.au/ currentstudents/current_students/fees/) page.

Level Undergraduate Level 1 subject

Pre-requisite(s) MATH 1022

Equivalent Subjects MATH 1018 - Mathematics for Engineers 1 (WSTC)

Incompatible Subjects MATH 1014 - Mathematics 1A MATH 1015 - Mathematics 1B MATH 1011 - Fundamentals of Mathematics MATH 1021 - Mathematics for Engineers Preliminary

Restrictions Students must be enrolled at Western Sydney University, The College in 7022 Associate Degree in Engineering

Assumed Knowledge

HSC Maths achieved at Band 5 or 6. This is the minimum requirement.

Learning Outcomes

On successful completion of this subject, students should be able to:

- 1. Solve problems involving matrices and determinants
- 2. Define j2 and operate with complex numbers
- 3. Perform operations on vectors, both in 2-D and 3-D
- 4. Find solutions to problems involving logarithmic, exponential, inverse trigonometric, hyperbolic and inverse hyperbolic functions
- Apply correctly the techniques of both differential and integral calculus to solve problems that may involve transcendental functions
- 6. Define a random variable and find its probability distribution and calculate probabilities based on the Binomial distribution, the Poisson distribution and the Normal distribution
- 7. Appreciate the relevance of mathematics in an engineering context
- 8. Communicate mathematical ideas using common conventions

Subject Content

1. Matrix Algebra: Determinants; matrices; solution of simultaneous equations using matrices and determinants; Gaussian elimination; eigenvalues and eigenvectors.

2. Complex Numbers: Basic operations; polar coordinates; Euler?fs formula; powers and roots of complex numbers.

3. Vectors: definition; basic operations; dot product; cross product; angle between two vectors; equations of lines and planes.

4. Functions and Inverse Functions: Revision - inverse functions, logs, exponentials; trig and inverse trig functions; hyperbolic and inverse hyperbolic functions.

5. Differential Calculus: Revision- limits; continuity; definition of the first derivative, differentiation rules; implicit differentiation including inverse trig functions and inverse hyperbolic functions.

Applications of Differential Calculus: L?fHopital?fs Rule; properties of curves; differentials; related rates.

7. Integration: Indefinite/defin

Assessment

The following table summarises the standard assessment tasks for this subject. Please note this is a guide only. Assessment tasks are regularly updated, where there is a difference your Learning Guide takes precedence.

Туре	Length	Percent	Threshold	Individual/ Group Task	Mandatory
Numerical Problem Solving	Part 1: Approx. 30 min Part 2: Approx. 30 min	10	Ν	Individual	Ν
Numerical Problem Solving	90 mins + 30 min for online submission	30 n	Ν	Individual	Ν
Applied Project	Approx 1 hour	20	Ν	Individual	Ν
End-of- session Exam	Part 1: 2 hours + 30 min for online submission Part 2: 20 min for each student for viva voce	40	Y	Individual	Υ

Prescribed Texts

 Croft, A & Davison, R (2008) Mathematics for engineers: a modern interactive approach (3rd ed). Harlow: Pearson Prentice Hall, Harlow UK

Teaching Periods

Quarter 1 (2025)

Nirimba Education Precinct

Hybrid

Subject Contact Zdenka Misanovic (https:// directory.westernsydney.edu.au/search/name/Zdenka Misanovic/)

View timetable (https://classregistration.westernsydney.edu.au/odd/ timetable/?subject_code=MATH1017_25-Q1_BL_3#subjects)

Penrith (Kingswood) Hybrid

Subject Contact Upeka Kuruppu (https:// directory.westernsydney.edu.au/search/name/Upeka Kuruppu/) View timetable (https://classregistration.westernsydney.edu.au/odd/ timetable/?subject_code=MATH1017_25-Q1_KW_3#subjects)