HORT 1007 PROTECTED CROPPING PLANT NUTRITION

Legacy Code 301277

Coordinator Michelle Mak (https://directory.westernsydney.edu.au/search/name/Michelle Mak/)

Student Contribution Band

Check your fees via the Fees (https://www.westernsydney.edu.au/currentstudents/current_students/fees/) page.

Learning Outcomes

On successful completion of this subject, students should be able to:

- 1. Identify the essential elements needed for plant growth and their properties
- Investigate the relationships between nutrient acidity, electrical conductivity, and plant nutrient requirements and availability in relation to their effect on crop growth and management at different growth stages
- Explain plant nutrient deficiencies in commonly used substrates including symptoms, sampling techniques and management for correction
- 4. Illustrate effective waste water management and nutrient optimisation
- 5. Demonstrate a range of foundational academic skills including oral and written communication, an understanding of scientific method, professional document development, referencing, collaboration skills through group study and independent study skills.

Subject Content

- -Factors affecting plant growth, such as; essential elements required for plant nutrition and their properties in response to acid and base changes (pH) and electrical conductivity (EC)
- -Plant nutrient requirements and uptake at different growth stages and their management
- -Plant nutrient deficiencies, their symptoms, sampling and correction -Substrates commonly used in protected cropping, their influence on water and nutrient and how these inputs can be recovered, recycled or disposed of in an environmentally sustainable way.
- -Practical skills will include using hand-held monitoring technologies. Analytical skills will include choosing appropriate nutrient substitutions, calculating nutrient recipes and evaluating and utilising online tools to verify crop husbandry decision making.
- -Demonstrate foundational academic skills such as; critical thinking, academic writing skills, oral and written communication, professional document development, avoiding plagiarism and correct referencing techniques, providing fair and constructive criticism.

Assessment

The following table summarises the standard assessment tasks for this subject. Please note this is a guide only. Assessment tasks are regularly updated, where there is a difference your Learning Guide takes precedence.

Туре	Length	Percent	Threshold	Individual/ Mandatory Group Task
Portfolio	8 x 100 words or equivalent (800 words)	40	N	Individual
Case Study	v 1,000 words or equivalent	30	N	Group
Peer Review	100 words	10	N	Individual
Final Quiz	2 hours	20	N	Individual

Prescribed Texts

 Greenhouse horticulture Technology for optimal crop production, Cecilia Stanghellini, Bert Van 't Ooster and Ep Heuvelink, Published: 2019 Pages: 300 ISBN: 978-90-8686-329-7