ENGR 1047 ADVANCED ENGINEERING PHYSICS 1

Credit Points 10

Legacy Code 301334

Coordinator Md Abdul Alim (https://directory.westernsydney.edu.au/ search/name/Md Abdul Alim/)

Description This subject will be offered at Engineering Innovation Hub -Hassall St, Parramatta campus. The aim of this subject is to introduce students to the conceptual, mathematical and practical aspects of the following topics in advanced engineering physics, viz: vectors, linear and circular motion, photons, electrons and atoms, Newtons laws of motion, work and kinetic energy, dynamics of rotational motion, fluid dynamics, thermodynamics, periodic motion and waves/acoustics. The content will be delivered via a combination of lectures, tutorials and hands-on practicals in order to develop the growth of theoretical and applied engineering physics knowledge. This will provide students with a solid foundation for their engineering studies.

School Eng, Design & Built Env

Discipline Other Engineering And Related Technologies

Student Contribution Band HECS Band 2 10cp

Check your fees via the Fees (https://www.westernsydney.edu.au/ currentstudents/current_students/fees/) page.

Level Undergraduate Level 1 subject

Equivalent Subjects ENGR 1011 - Engineering Physics ENGR 1013 - Engineering Physics

Assumed Knowledge

HSC Physics and HSC Mathematics Extension 1 (not General Mathematics).

Learning Outcomes

After successful completion of this subject, students will be able to:

- 1. Identify and apply System Internationale (SI) units.
- 2. Identify and solve problems by applying the laws and principles of engineering physics.
- 3. Plan, conduct and document experiments performed in the laboratory.
- 4. Interpret the results of experiments against the theory including the estimation of experimental uncertainties.

Subject Content

- 1. Units, Physical Quantities and Vectors
- 2. Motion along a straight path
- 3. Motion in two and three dimensions
- 4. Newton's Laws of motion
- 5. Work and energy applications
- 6. Momentum, impulse and collisions
- 7. Rotation and dynamics of rigid bodies
- 8. Temperature and heat
- 9. Periodic motion and mechanical waves

Assessment

The following table summarises the standard assessment tasks for this subject. Please note this is a guide only. Assessment tasks are regularly updated, where there is a difference your Learning Guide takes precedence.

Туре	Length	Percent	Threshold	Individual/ Group Task	Mandatory
Report	2 hours per practical	15	Ν	Individual	Ν
Quiz	40 minutes	20	Ν	Individual	Ν
Practical Exam	2 hours	5	Ν	Individual	Ν
Numerical Problem Solving	5-10 problems	10	Ν	Individual	Y
Final Exam	2 hours	50	Ν	Individual	Y

Prescribed Texts

• Young, HD & Freedman, RA 2020, Sears and Zemansky's University Physics with Modern Physics, 15th Global edn, Pearson Higher Ed, Boston.