PHYS 1006 PHYSICS 2

Credit Points 10

Legacy Code 300829

Coordinator Allan Torres (https://directory.westernsydney.edu.au/ search/name/Allan Torres/)

Description This unit develops a deeper understanding of physics for students pursuing courses in nanotechnology, chemical, physical and mathematical sciences. Topics covered include Mechanics: Equilibrium, stress and strain, harmonic oscillators, rotational motion, moment of inertia. Gravitation, types of force in nature. Thermal Physics: temperature, specific & latent heat, heat transfer, kinetic theory of gases, first law of thermodynamics, isothermal, isobaric & adiabatic processes. Introduction to Modern Physics: special relativity, time dilation, length contraction, momentum, mass, rest energy, velocity addition. Basic quantum theory, Planck's hypothesis, wave nature of matter, quantum mechanical view of atoms. Nuclear physics, radiation, half-life, nuclear reactions.

School Science

Discipline Physics

Student Contribution Band HECS Band 2 10cp

Check your HECS Band contribution amount via the Fees (https:// www.westernsydney.edu.au/currentstudents/current_students/fees/) page.

Level Undergraduate Level 1 subject

Equivalent Subjects LGYA 6150 - Physics 2

Assumed Knowledge

HSC 2 Unit Physics or one semester of university level Physics or equivalent plus HSC 2 Unit Mathematics Band 4 (Not General Mathematics) or one semester of university level Mathematics or equivalent.

Learning Outcomes

On successful completion of this subject, students should be able to:

- 1. Analyse the description of a physical problem, for the topics listed in the contents, and apply a frame of reference or other appropriate mathematical framework to the problem
- 2. Explain the physical principles by writing down appropriate equations or other mathematical models such as a geometrical construct to produce a mathematical model of the physical problem
- Identify known and unknown variables in a mathematical model of a physical problem and manipulate the model to predict unknown variables
- Interpret results of calculations in terms of real physical world events
- 5. Record, present and analyse experimental data
- 6. Estimate the errors in a measurement and propagate the effects of these errors through simple calculations

Subject Content

Assessment

The following table summarises the standard assessment tasks for this subject. Please note this is a guide only. Assessment tasks are regularly updated, where there is a difference your Learning Guide takes precedence.

ltem	Length	Percent	Threshold	Individual/ Group Task
Quiz	4x 15 minute quizzes	20	Ν	Individual
Intra-session exam	80 minutes	10	Ν	Individual
Final exam	2 hours and 20 minutes	40	Ν	Individual
Laboratory notebook	3hr lab classes in alternate weeks	30	Ν	Individual

Prescribed Texts

- Giancoli, D. C., Physics, Principles with Applications, 7th Edition, Pearson (2014)
- Physics 2 Laboratory Manual. Available from the bookshop or via this subjects vUWS web site
- Physics 2 Learning Guide. Available via this subjects vUWS web site

Teaching Periods

Spring Parramatta - Victoria Rd

Day

Subject Contact Allan Torres (https://directory.westernsydney.edu.au/ search/name/Allan Torres/)

View timetable (https://classregistration.westernsydney.edu.au/even/ timetable/?subject_code=PHYS1006_22-SPR_PS_D#subjects)