MATH 3006 MATHEMATICAL MODELLING

Credit Points 10

Legacy Code 200022

Coordinator Stephen Weissenhofer (https://

directory.westernsydney.edu.au/search/name/Stephen Weissenhofer/)

Description Mathematical Modelling is about solving real world problems. The real world is a complicated place which we often need or want to understand better. One way to do this is to set up a mathematical model which we hope can provide insights, predictions and a greater understanding of a complex system. Selected realworld problems are approximated by mathematical models that are amenable to being written in terms of linear and non-linear equations or differential equations. Once equations are solved emphasis is placed on interpreting solutions, modifying models as required and using models for prediction.

School Computer, Data & Math Sciences

Discipline Statistics

Student Contribution Band HECS Band 1 10cp

Check your HECS Band contribution amount via the Fees (https:// www.westernsydney.edu.au/currentstudents/current_students/fees/) page.

Level Undergraduate Level 3 subject

Pre-requisite(s) MATH 2003

Assumed Knowledge

Matrix algebra and how to find eigenvalues and eigenvectors.

Learning Outcomes

On successful completion of this subject, students should be able to:

- formulate equations (both differential and non-differential) which describe selected common physical situations,
- 2. solve such equations analytically, where appropriate
- 3. apply computer packages to solve such equations
- interpret the effects of altering parameters involved in a modelling situation
- 5. identify limitations of mathematical models proposed
- 6. evaluate the effectiveness of a model.

Subject Content

- 1. The modelling process
- 2. Modelling using proportionality and geometric similarity
- 3. Modelling discrete dynamical systems:
- modelling change with difference equations
- approximating change with difference equations
- solving difference equations
- 4. Modelling continuous dynamical systems:
- first and second order ordinary differential equations
- higher order linear ordinary differential equations
- systems of ordinary differential equations nonlinear ordinary differential equations
- 5. Applications will be drawn from areas of biology, chemistry, physics, social sciences and economics.

Assessment

The following table summarises the standard assessment tasks for this subject. Please note this is a guide only. Assessment tasks are regularly updated, where there is a difference your Learning Guide takes precedence.

ltem	Length	Percent	Threshold	Individual/ Group Task
Class Test 1: Covers weeks 1 to 6 of lecture material on the modelling process, modelling with difference equations, geometric similarity, and fitting models to data. Interpreting solutions and identifying limitations, suggesting improvements	50 minutes	20	Ν	Individual
Class Test 2: Covers weeks 7 – 13 of the lecture material on modelling with differential equations, applied to arms race, population growth, managing prescription drug dosages, predator- prey models or other situations.	50 minutes	20	Ν	Individual
Final exam	3 hours	60	Ν	Individual

Prescribed Texts

 Giordano, F. R., Fox, W. P., & Horton, S. (2014). A first course in mathematical modeling (5th ed.). Boston, MA Brooks/Cole Thomson Learning.

Teaching Periods

Spring Campbelltown

Day Subject Contact Stephen Weissenhofer (https:// directory.westernsydney.edu.au/search/name/Stephen Weissenhofer/)

View timetable (https://classregistration.westernsydney.edu.au/even/ timetable/?subject_code=MATH3006_22-SPR_CA_D#subjects)

Parramatta - Victoria Rd

Day

Subject Contact Stephen Weissenhofer (https:// directory.westernsydney.edu.au/search/name/Stephen Weissenhofer/)

View timetable (https://classregistration.westernsydney.edu.au/even/ timetable/?subject_code=MATH3006_22-SPR_PS_D#subjects)